Из-за периодической блокировки нашего сайта РКН сервисами, просим воспользоваться резервным адресом:
Загрузить через ClipSaver.ruУ нас вы можете посмотреть бесплатно Speed Control of DC Shunt Motor By Armature Resistance Control Method Using MATLAB Simulink или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса savevideohd.ru
#matlabsimulink #shoaibahmeddayo #dcmachines #dcmotors #dcmotor #SpeedControlmethodofDCshuntmotor #SpeedControlofDCmotorbyarmatureresistancecontrol #DCMOTORSIMULATIONUSINGSIMULINKMATLAB #DCseriesmotor #SpeedFieldControlofDCShuntMotorinMATLAB #MATLABSpeedcontrolofDCmotor #SpeedControlofDCMotorbyArmatureResistanceControl #ArmatureResistanceControlDCMotor #DCMotorModelinSimulink #SpeedControlofDCSeriesMotors #MATLABSimulationonSpeedControlofDCMotor (DC Machine (Shunt Motor) Model Parameters): Armature resistance [Ra] (ohms) = 0.78 ohms Armature Inductance [La] (Henry) = 0.016 Henry Field resistance [Rf] (ohms) = 100 ohms Field Inductance [Lf] (Henry) = 112.5 Henry Field-armature mutual inductance Laf (Henry) = 5 Henry Total inertia J (kg.m^2) = 0.05 Viscous friction coefficient Bm (N.m.s) = 0.01 Initial speed (rad/s) = 1 rad/s Initial field current = 1 Torque (TL) = 1 N.m Vdc (Applied Voltage to Armature) = 240 Vdc (Armature-Resistance Control): This method is based on the fact that by varying the voltage available across the armature, the back e.m.f and hence the speed of the motor can be changed. This is done by inserting a variable resistance RC (known as controller resistance) in series with the armature. Speed of a dc motor is directly proportional to the back emf Eb and Eb = V - IaRa. That means, when supply voltage V and the armature resistance Ra are kept constant, then the speed is directly proportional to armature current Ia. Thus, if we add resistance in series with the armature, Ia decreases and, hence, the speed also decreases. Greater the resistance in series with the armature, greater the decrease in speed.