Русские видео

Сейчас в тренде

Иностранные видео


Скачать с ютуб Smooth Shape-Aware Functions with Controlled Extrema в хорошем качестве

Smooth Shape-Aware Functions with Controlled Extrema 12 лет назад


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса savevideohd.ru



Smooth Shape-Aware Functions with Controlled Extrema

Accompanying video for our SGP 2012 paper, "Smooth Shape-Aware Functions with Controlled Extrema". A collaboration between Alec Jacobson (ETH Zurich), Tino Weinkauf (MPI Informatik, Saarbrucken, Germany). Abstract: Functions that optimize Laplacian-based energies have become popular in geometry processing, e.g. for shape deformation, smoothing, multiscale kernel construction and interpolation. Minimizers of Dirichlet energies, or solutions of Laplace equations, are harmonic functions that enjoy the maximum principle, ensuring no spurious local extrema in the interior of the solved domain occur. However, these functions are only C0 at the constrained points, which often causes smoothness problems. For this reason, many applications optimize higher-order Laplacian energies such as biharmonic or triharmonic. Their minimizers exhibit increasing orders of continuity but also increasing oscillation, immediately releasing the maximum principle. In this work, we identify characteristic artifacts caused by spurious local extrema, and provide a framework for minimizing quadratic energies on manifolds while constraining the solution to obey the maximum principle in the solved region. Our framework allows the user to specify locations and values of desired local maxima and minima, while preventing any other local extrema. We demonstrate our method on the smoothness energies corresponding to popular polyharmonic functions and show its usefulness for fast handle-based shape deformation, controllable color diffusion, and topologically-constrained data smoothing.

Comments