У нас вы можете посмотреть бесплатно Finding the standard form of a parabola given directrix and vertex или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса savevideohd.ru
Learn how to write the equation of a parabola given the vertex and the directrix. A parabola is the shape of the graph of a quadratic equation. A parabola can open up or down (if x is squared) or open left or right (if y is squared). Recall that the focus and the vertex of a parabola are on the same line of symmetry. When given the vertex and the directrix of a parabola, recall that the vertex of a parabola is halfway between the focus and the directrix and the focus is inside the parabola. This enables us to identify the direction which the required parabola opens. We also need to identify the value of p, which is the distance between the vertex and the focus. p is negative when the parabola opens down or left and is positive when the parabola opens right or up. Once we identify the direction and the value of p, we can use the equation of parabola given by (y - k)^2 = 4p(x - h) for parabolas that opens up or down and (x - h)^2 = 4p(y - k) for parabolas that opens left or right. #conicsections #parabolaconicsections