У нас вы можете посмотреть бесплатно "So close 🤏🏼,yet so far ♾️" Explanation and code in description или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса savevideohd.ru
I am the original creator of this Pi video. This went viral almost on all social media. Got 45 million view on Instagram and 12 million view on Tiktok. Link to the IG pi post : / cyrfbptryc9 Titok Post : https://www.tiktok.com/@thiebo_badmin... --------------------------------------------------- If you liked this "visualization of pi", I also made an UHD 1440p widescreen version of this pi simulation which is 3 minutes longer. Here is the link , hope you'd engage there too and help that go viral as well ! :) • Watch π (Pi) painting "The area of a ... --------------------------------------------------- If you are looking for a short explanation of the Post : The outer arm spins around at a speed, precisely π times faster than the inner arm. But because π is this never-ending, irrational number, that outer arm will never, ever stop at its starting point, no matter how long the video goes on. It's like a forever chase scene where the arm always misses the target line by the tiniest bit, and that bit is basically as thin as it gets. The Detailed explanation of this Pi post by "angzt" from reddit : https://www.reddit.com/r/oddlysatisfy... --------------------------------------------------- Python code for the final drawing made by this mechanism ( Not for the animation ) : import numpy as np import matplotlib.pyplot as plt Create an array of theta values in degrees (e.g., from 0 to 113*360 degrees) theta_degrees = np.linspace(0, 113*360, 10000) Convert degrees to radians theta_radians = np.deg2rad(theta_degrees) Calculate z(theta) using the formula , 1j is imaginary number z = np.exp(theta_radians * 1j) + np.exp(np.pi * theta_radians * 1j) Separate the real and imaginary parts of z x = np.real(z) y = np.imag(z) Create a plot with specific settings plt.figure(figsize=(10, 10)) # Set a square figure 10x10 inches plt.plot(x, y, color='white', linewidth=0.5) # Set line color to white and line width to 0.5 plt.gca().set_facecolor('black') # Set background color to black plt.gca().set_aspect('equal') # Equal aspect ratio plt.grid(False) # Turn off the grids plt.xlim(-2.5, 2.5) # X-axis limit plt.ylim(-2.5, 2.5) # Y-axis limit plt.show() # Display the plot