РусскиС Π²ΠΈΠ΄Π΅ΠΎ

БСйчас Π² Ρ‚Ρ€Π΅Π½Π΄Π΅

Π˜Π½ΠΎΡΡ‚Ρ€Π°Π½Π½Ρ‹Π΅ Π²ΠΈΠ΄Π΅ΠΎ


Π‘ΠΊΠ°Ρ‡Π°Ρ‚ΡŒ с ΡŽΡ‚ΡƒΠ± DiffDock: Diffusion Steps, Twists and Turns for Molecular Docking and Beyond! Π² Ρ…ΠΎΡ€ΠΎΡˆΠ΅ΠΌ качСствС

DiffDock: Diffusion Steps, Twists and Turns for Molecular Docking and Beyond! 1 Π³ΠΎΠ΄ Π½Π°Π·Π°Π΄


Если ΠΊΠ½ΠΎΠΏΠΊΠΈ скачивания Π½Π΅ Π·Π°Π³Ρ€ΡƒΠ·ΠΈΠ»ΠΈΡΡŒ ΠΠΠ–ΠœΠ˜Π’Π• Π—Π”Π•Π‘Π¬ ΠΈΠ»ΠΈ ΠΎΠ±Π½ΠΎΠ²ΠΈΡ‚Π΅ страницу
Если Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‚ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ со скачиваниСм, поТалуйста Π½Π°ΠΏΠΈΡˆΠΈΡ‚Π΅ Π² ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΡƒ ΠΏΠΎ адрСсу Π²Π½ΠΈΠ·Ρƒ страницы.
Бпасибо Π·Π° использованиС сСрвиса savevideohd.ru



DiffDock: Diffusion Steps, Twists and Turns for Molecular Docking and Beyond!

presented on March 8th 2023 by Gabriele Corso, Bowen Jing, and Hannes StΓ€rk abstract: Predicting the binding structure of a small molecule ligand to a protein is critical to drug design. Unlike previous work, we frame molecular docking as a generative modeling problem and develop DiffDock, a diffusion generative model over the non-Euclidean manifold of ligand poses. Empirically, DiffDock significantly outperforms the previous state-of-the-art traditional docking and deep learning methods on both crystal and computationally folded structures.

Comments