Русские видео

Сейчас в тренде

Иностранные видео


Скачать с ютуб Integrated Gradients | SAiDL | Reading Sessions в хорошем качестве

Integrated Gradients | SAiDL | Reading Sessions 3 года назад


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса savevideohd.ru



Integrated Gradients | SAiDL | Reading Sessions

Part of the SAiDL Reading Sessions Presenter: Shashank Madhusudan We study the problem of attributing the prediction of a deep network to its input features, a problem previously studied by several other works. We identify two fundamental axioms---Sensitivity and Implementation Invariance that attribution methods ought to satisfy. We show that they are not satisfied by most known attribution methods, which we consider to be a fundamental weakness of those methods. We use the axioms to guide the design of a new attribution method called Integrated Gradients. Our method requires no modification to the original network and is extremely simple to implement; it just needs a few calls to the standard gradient operator. We apply this method to a couple of image models, a couple of text models and a chemistry model, demonstrating its ability to debug networks, to extract rules from a network, and to enable users to engage with models better. Paper link: https://arxiv.org/abs/1703.01365

Comments