У нас вы можете посмотреть бесплатно Collision Avoidance for Indoor Service Robots through Multimodal Deep Reinforcement Learning или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса savevideohd.ru
Abstract. In this paper, we propose an end-to-end approach to endowindoor service robots with the ability to avoid collisions using Deep Reinforcement Learning (DRL). The proposed method allows a controller toderive continuous velocity commands for an omnidirectional mobile robotusing depth images, laser measurements, and odometry based speed estimations. The controller is parameterized by a deep neural network,and trained using DDPG. To improve the limited perceptual range ofmost indoor robots, a method to exploit range measurements throughsensor integration and feature extraction is developed. Additionally, toalleviate the reality gap problem due to training in simulations, a simple processing pipeline for depth images is proposed.As a case studywe consider indoor collision avoidance using the Pepper robot. Throughsimulated testing we show that our approach is able to learn a proficient collision avoidance policy from scratch. Furthermore, we showempirically the generalization capabilities of the trained policy by testing it in challenging real-world environments. Videos showing the behavior of agents trained using the proposed method can be found at • Collision Avoidance for Indoor Servic...