У нас вы можете посмотреть бесплатно Paper Review: Multiple Graphs in bvp4c | English Subtitles или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса savevideohd.ru
Combining multiple graphs from the "bvp4c" function in MATLAB can provide a comprehensive visualization of your boundary value problem solutions. By plotting different variables or solutions on the same axes or in subplots, you can gain valuable insights into the relationships and behaviors within your system. Clear and concise labeling of axes, legends, and titles is essential for effective communication of your results. Experimenting with different plot styles and colors can further enhance the clarity and visual appeal of your graphical representation. Ultimately, these graphical tools empower you to effectively analyze and present the solutions obtained from your "bvp4c" simulations. ------bvp4c code for multiple graphs----- function Md_Yousuf_2024_Multiple_Graphs clc clear clf E = 0.003; Nt = 0.3; Rp = [1, 3 ,5]; Nb = 0.3; Le = 1; Kr = 0.20; AE = 2; M = 1; p = 1; Gr= 0.1; Gm = 0.1; theta_w = 0.5; Pr = 1.7; lambda = 0.2; n = 0.3; c = {'r', 'k', 'b'} for i = 1:3 solinit = bvpinit(linspace(0,10, 20), [1 0 0 0 0 0 0]); sol = bvp4c(@odefun, @bcfun, solinit ); x = sol.x; % domain y = sol.y; % y, y^' etc skin_friction_coefficient = y(5,1) figure (1) plot(x, y(2, :), c{i}) xlabel('\eta') ylabel('f^\prime') hold on end legend('Rp = 1', 'Rp = 3', 'Rp =5') function dydx = odefun(x, y) temp1 = y(2)^2 - y(1)*y(3) + M*(y(2)*(sin(pi*x))^2 - E) - Gr*y(4) - Gm*y(6); temp2 = 1/(1 + Rp(i)*(1 + (theta_w - 1)*y(4))^3)*(-Pr*y(5)*y(1) - Nb*y(5)*y(7) - Nt*y(5)^2 -3*Rp(i)*(theta_w - 1)*(1 +(theta_w - 1)*y(4))^2*y(5)^2); temp3 = -Le*y(7)*y(1) - Nt/Nb*temp1 + Kr*Le*(1 + lambda*y(4))^n*exp(-AE/(1 + lambda*y(4))); dydx = [y(2); y(3); temp1; y(5); temp2; y(7); temp3]; end function residual = bcfun(y0, yinf) residual = [y0(2) - 1; y0(1); y0(6) - 1; y0(4) - 1; yinf(2); yinf(4); yinf(6)]; end end