Русские видео

Сейчас в тренде

Иностранные видео


Скачать с ютуб [CVPR2024] BOTH2Hands: Inferring 3D Hands from Both Text Prompts and Body Dynamics в хорошем качестве

[CVPR2024] BOTH2Hands: Inferring 3D Hands from Both Text Prompts and Body Dynamics 10 месяцев назад


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса savevideohd.ru



[CVPR2024] BOTH2Hands: Inferring 3D Hands from Both Text Prompts and Body Dynamics

Project Page: https://godheritage.github.io/ Arxiv: https://arxiv.org/abs/2312.07937 The recently emerging text-to-motion advances have spired numerous attempts for convenient and interactive human motion generation. Yet, existing methods are largely limited to generating body motions only without considering the rich two-hand motions, let alone handling various conditions like body dynamics or texts. To break the data bottleneck, we propose BOTH57M, a novel multi-modal dataset for two-hand motion generation. Our dataset includes accurate motion tracking for the human body and hands and provides pair-wised finger-level hand annotations and body descriptions. We further provide a strong baseline method, BOTH2Hands, for the novel task: generating vivid two-hand motions from both implicit body dynamics and explicit text prompts. We first warm-up two parallel body-to-hand and text-to-hand diffusion models and then utilize the cross-attention transformer for motion blending. Extensive experiments and cross-validations demonstrate the effectiveness of our approach and dataset for generating convincing two-hand motions from the hybrid body-and-textual conditions. Our dataset and code will be disseminated to the community for future research. Wenqian Zhang, Molin Huang, Yuxuan Zhou, Juze Zhang, Jingyi Yu, Jingya Wang, Lan Xu, BOTH2Hands: Inferring 3D Hands from Both Text Prompts and Body Dynamics

Comments