У нас вы можете посмотреть бесплатно Graph Posterior Network | Maximilian Stadler & Bertrand Charpentier или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса savevideohd.ru
Join the Learning on Graphs and Geometry Reading Group: https://hannes-stark.com/logag-readin... Paper "Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification": https://arxiv.org/abs/2110.14012 Abstract: The interdependence between nodes in graphs is key to improve class predictions on nodes and utilized in approaches like Label Propagation (LP) or in Graph Neural Networks (GNN). Nonetheless, uncertainty estimation for non-independent node-level predictions is under-explored. In this work, we explore uncertainty quantification for node classification in three ways: (1) We derive three axioms explicitly characterizing the expected predictive uncertainty behavior in homophilic attributed graphs. (2) We propose a new model Graph Posterior Network (GPN) which explicitly performs Bayesian posterior updates for predictions on interdependent nodes. GPN provably obeys the proposed axioms. (3) We extensively evaluate GPN and a strong set of baselines on semi-supervised node classification including detection of anomalous features, and detection of left-out classes. GPN outperforms existing approaches for uncertainty estimation in the experiments. Authors: Maximilian Stadler, Bertrand Charpentier, Simon Geisler, Daniel Zügner, Stephan Günnemann Twitter Hannes: / hannesstaerk Twitter Dominique: / dom_beaini Twitter Valence Discovery: / valence_ai Reading Group Slack: https://logag.slack.com/join/shared_i... ~ 00:00 Intro 06:30 Research contribution 11:18 Axiomatic approach 20:04 Bayesian Update 43:36 Experimental Evaluation 01:02:15 Conclusion 01:02:50 Q&A