У нас вы можете посмотреть бесплатно Linear Regression in Python - Full Project for Beginners или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса savevideohd.ru
Welcome to this comprehensive "Linear Regression with Python Tutorial" for beginners! In this video, we will cover the basics of linear regression, a fundamental concept in data science and machine learning. With this tutorial, you will learn how to perform data analysis using linear regression in Python. This tutorial is perfect for anyone who is new to the field of data science and machine learning and wants to get started with a real-world data science project. We will start by introducing the concepts of statistical learning and statistics, and then move on to applying these concepts in Python to perform linear regression. You will learn how to use Python libraries such as NumPy and Pandas for data preprocessing, and then use scikit-learn for building and evaluating a linear regression model. By the end of this tutorial, you will have a solid understanding of linear regression and how to apply it in Python for your own data science projects. So, if you're ready to dive into the world of data science and machine learning, make sure to watch this tutorial till the end. Don't forget to like and subscribe for more tutorials like this! 👉 Check out the code: https://github.com/alejandro-ao/py-ec... 👉 Dataset: https://www.kaggle.com/datasets/kolaw... Errata 30:30 Intersection with the Y axis* ------------------------------------------------------------------------------------------------------------------------------------------------ Timestamps: 00:00 Intro 02:10 Importing the dataset 08:14 Exploratory Data Analysis 11:31 Pairplot of all numerical variables 14:34 Quick Linear Regression Explanation 20:10 Split the data using Scikit-Learn 27:05 Train a model using Scikit-Learn 29:08 Interpreting the Coefficients 33:09 Create Predictions 35:20 Graphical Evaluation of the Predictions 37:40 Analytical Evaluation of the Errors 42:19 Residual Analysis 48:37 Outro