Русские видео

Сейчас в тренде

Иностранные видео




Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса savevideohd.ru



Given a formula of hyperbola in standard form find foci, asymptotes, center vertices

Learn how to graph hyperbolas. To graph a hyperbola from the equation, we first express the equation in the standard form, that is in the form: (x - h)^2 / a^2 - (y - k)^2 / b^2 = 1 for horizontal hyperbola or (y - k)^2 / a^2 - (x - h)^2 / b^2 = 1 for vertical hyperbola. Next, we identify the characteristics of the given hyperbola. 'a' (the distance from the center to the vertices) is the square root of the first denominator and 'b' (the distance from the center to the covertices) is the square root of the second denominator. 'c' (the distance from the center to the foci) is obtained by taking the square root of the sum of a^2 and b^2. Using these characteristics of the hyperbola, we can graph the asymptotes of the hyperbola and hence graph the hyperbola. Note that a hyperbola is vertical when it is facing up and down and is horizontal when it is facing right and left. #conicsections #hyperbolaconicsections #conicsections #hyperbolaconicsections #conicsections #hyperbolaconicsections

Comments