Русские видео

Сейчас в тренде

Иностранные видео


Скачать с ютуб Stereo DSO: Large-Scale Direct Sparse Visual Odometry with Stereo Cameras (ICCV '17) в хорошем качестве

Stereo DSO: Large-Scale Direct Sparse Visual Odometry with Stereo Cameras (ICCV '17) 7 лет назад


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса savevideohd.ru



Stereo DSO: Large-Scale Direct Sparse Visual Odometry with Stereo Cameras (ICCV '17)

Publication: Stereo DSO: Large-Scale Direct Sparse Visual Odometry with Stereo Cameras, ICCV 2017 Authors: Rui Wang Martin Schwörer Daniel Cremers Paper & Supplementary Material: https://vision.in.tum.de/members/wangr Project Page: https://vision.in.tum.de/research/vsl... SLAM Extension:    • SLAM Extension to Stereo DSO   Abstract: We propose Stereo Direct Sparse Odometry (Stereo DSO) as a novel method for highly accurate real-time visual odometry estimation of large-scale environments from stereo cameras. It jointly optimizes for all the model parameters within the active window, including the intrinsic/extrinsic camera parameters of all keyframes and the depth values of all selected pixels. In particular, we propose a novel approach to integrate constraints from static stereo into the bundle adjustment pipeline of temporal multi-view stereo. Real-time optimization is realized by sampling pixels uniformly from image regions with sufficient intensity gradient. Fixed-baseline stereo resolves scale drift. It also reduces the sensitivities to large optical flow and to rolling shutter effect which are known shortcomings of direct image alignment methods. Quantitative evaluation demonstrates that the proposed Stereo DSO outperforms existing state-of-the-art visual odometry methods both in terms of tracking accuracy and robustness. Moreover, our method delivers a more precise metric 3D reconstruction than previous dense/semi-dense direct approaches while providing a higher reconstruction density than feature-based methods.

Comments