У нас вы можете посмотреть бесплатно 'Learning' Entanglement in Quantum Simulation | Seminar Series with Peter Zoller или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса savevideohd.ru
'Learning' Entanglement in Quantum Simulation Qiskit Seminar Series Episode 115 with Peter Zoller Your formal invite to weekly Qiskit videos ► https://ibm.biz/q-subscribe Speaker: Peter Zoller Host: Alireza Seif Abstract: The unique feature of quantum many-body physics is entanglement, and one of the key challenges in quantum information science is to understand the entanglement structure of many-particle wavefunctions through quantum simulation experiments. Here we report on a theory-experiment collaboration, where we utilized a 51-ion programmable quantum simulator to prepare ground and excited states of a 1D Heisenberg model using variational algorithms. We then used tomography of the reduced density matrix to analyze bipartite entanglement for subsystems of up to 20 lattice sites. Our results show that ground states exhibit area law scaling of entanglement, while excited states transition to volume law scaling. We also provide first experimental evidence supporting the Bisognano-Wichmann prediction that the reduced density operator for ground states follows the form of a Gibbs ensemble with a local temperature serving as a signature of entanglement. In particular, we observed a parabolic inverse temperature profile in a subregion of the bulk at the critical point, as predicted by Conformal Field Theory. Our findings and techniques are expected to be broadly applicable to many-body problems with local interactions and in higher dimensions. Bio: Peter Zoller is a Professor for Theoretical Physics at the University of Innsbruck, and Scientific Director at the Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences. His scientific work addresses problems at the interface of quantum optics and quantum information, and many-body physics and quantum information science. He is known for proposals of trapped ion quantum computing and quantum simulation with atomic platforms.