Русские видео

Сейчас в тренде

Иностранные видео


Скачать с ютуб Gibberellin overexpression increases tree biomass: The future of forestry в хорошем качестве

Gibberellin overexpression increases tree biomass: The future of forestry 2 дня назад


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса savevideohd.ru



Gibberellin overexpression increases tree biomass: The future of forestry

Prepare to witness a hero origin story like no other. How were ordinary trees transformed into proliferative pros? Can they usher in the future of genetically modified organisms? Who are these ‘Biomass-ive’ super trees, and where will they strike next? Our story begins with the humble tree, which has played a vital role in humanity’s progress for millennia. As our consumption of trees rises at an alarming rate, our old friends struggle to keep up. Scientists have turned to genetic engineering to produce trees which can develop increased biomass at a faster rate. To do so, scientists targeted a plant enzyme called Gibberellin 20-oxidase, which regulates growth by controlling the biosynthesis of gibberellins – plant growth hormones. By adding extra copies of gibberellin 20-oxidase into hybrid aspen (Populus tremula x Populus tremuloides), scientists transformed ordinary trees into transgenic champions. Our heroes produced more gibberellins and grew significantly greater biomass than their civilian counterparts. Creator: Aanika Bray References: Eriksson, M. E., Israelsson, M., Olsson, O., Moritz, T. Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat Biotechnol. 18, 784 – 788 https://doi.org/10.1038/77355 (2000). Coles, J. P. et al. Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes. Plant J. 17, 547 – 556 https://doi.org/10.1046/j.1365-313x.1... (1999). Eriksson, M. E. & Moritz, T. Daylength and spatial expression of a gibberellin 20-oxidase isolated from hybrid aspen (Populus tremula l. x P. tremuloides Michx.). Planta. 214, 920 – 930 https://doi.org/10.1007/s00425-001-07... (2002). Peng, X. et al. Overexpression of a gibberellin 20-oxidase gene in poplar xylem led to an increase in the size of nanocellulose fibrils and improved paper properties. Carbohydr Polym. 314, 120959 https://doi.org/10.1016/j.carbpol.202... (2023). Helliwell, C., Chandler, P., Poole, A., Dennis, E. & Peacock, W. The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. PNAS. 94, 2065 – 2070 https://doi.org/10.1073/pnas.98.4.2065 (2001). Israelsson, M., Mellerowicz, E., Chono, M., Gullberg, J. & Moritz, T. Cloning and Overproduction of Gibberellin 3-Oxidase in Hybrid Aspen Trees. Effects on Gibberellin Homeostasis and Development. Plant physiol. 135, 221 – 230 https://doi.org/10.1104/pp.104.038935 (2004). Xu, Y. et al. The GA5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase: Molecular cloning and functional expression. Plant biol. 92, 6640 – 6644 https://doi.org/10.1073/pnas.92.14.6640 (1995). Ait-Ali, T. et al. Regulation of Gibberellin 20-Oxidase and Gibberellin 3β-Hydroxylase Transcript Accumulation during De-Etiolation of Pea Seedlings. Plant Physiol. 121, 783 – 791 https://doi.org/10.1104/pp.121.3.783 (1999). Phillips, A. L. et al. Isolation and Expression of Three Gibberellin 20-Oxidase cDNA Clones from Arabidopsis. Plant physiol. 108, 1049 – 1057 https://doi.org/10.1104/pp.108.3.1049 (1995). Koncz, C. & Schell, J. The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet. 204, 383 – 396 https://doi.org/10.1007/BF00331014 (1986). Nilsson, O. et al. Spatial pattern of cauliflower mosaic virus 35S promoter-luciferase expression in transgenic hybrid aspen trees monitored by enzymatic assay and non-destructive imaging. Transgenic Res. 1, 209 – 220 https://doi.org/10.1007/BF02524751 (1992).

Comments