У нас вы можете посмотреть бесплатно Spatial and Intensity Resolution in Digital Image Processing and its implementation in MATLAB || или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса savevideohd.ru
Video lecture series on Digital Image Processing, Lecture: 7, Spatial and Intensity Resolution and its Implementation in MATLAB What is spatial/coordinate/sampling and grey-level(intensity)/quantization resolution? What is Aliasing? What is down-sampling? What is checker-board pattern? What is Up-sampling? What is zooming? What is interpolation? Which are different interpolation techniques? How to implement Spatial resolution for digital image processing in MATLAB? How to implement zooming/up-sampling/interpolation for digital image processing in MATLAB? How to implement intensity/gray level resolution in MATLAB? How to convert the 8-bit image to 16-bit image in MATLAB? What are its effects? Digital Image Processing/DIP using/in MATLAB Link to download ppts/lecture notes: https://drive.google.com/drive/folder... MATLAB code used in the video is present at the end in the Description #DigitalImageProcessing #DIPusingMATLAB #StudyWithDrDafda #ElectronicsAndCommunicationEngineering #MATLAB Links of other lectures in the series: 1. What is Digital Image Processing? • What is Digital Image Processing || I... 2. Human Visual System and Elements of Digital Image Processing • Human Visual System and Elements of ... 3. Fundamental steps in Digital Image Processing • Fundamental steps in Digital Image Pr... 4. Image Sensing and Acquisition • Image Sensing and Acquisition in Digi... 5. Relationship between Pixels in Digital Image Processing: Neighborhood, Adjacency & Distance measures • Relationship between Pixels in Digita... 6. Image Sampling and Quantization • Image Sampling and Quantization in Di... % MATLAB program for increasing quantization(make 8 bit image 16 bit) % Increasing the Quantization Levels from 255 (2^8) to 65535(2^16) close all; clear all; clc I = imread('Maulik.png'); Igray = rgb2gray(I); I16 = im2uint16(Igray); figure montage({I, Igray, I16}, 'Size', [1 3]); title('Original Image Grayscale Image(8 bit) Grayscale Image(16 bit)'); %Interpolation techniques for zooming the image close all; clear all; clc Z = imread('MD256.png'); Z = im2gray(Z); Z2 = imresize(Z,0.25); figure imshow(Z2); title('Original Image (64x64)'); I7=imresize(Z2,[512,512],'nearest'); figure imshow(I7); title('Zoomed Image (512x512), using Nearest neighbor interpolation'); I8=imresize(Z2,[512,512],'bilinear'); figure imshow(I8); title('Zoomed Image (512x512), using Bilinear interpolation'); I9=imresize(Z2,[512,512],'bicubic'); figure imshow(I9); title('Zoomed Image (512x512), using Bicubic interpolation'); % MATLAB program on Intensity Resolution (Quantization Levels) close all; clear all; clc I = imread('Maulik.png'); Igray = rgb2gray(I); montage({I, Igray}); title('Original Image Grayscale Image(8 bit)'); [r, c, s] = size(Igray); %% Get Rows, Columns and Plane Number m = max(max(max(Igray))); %% Get maximum value of pixel in Image b = [ 1 2 3 4 5 6 7 8 ]; %% divide 8 bit image by different levels %%e.g. for 8, it is 2^8 = 256 hence will give 1 bit image figure for dd = 1 : length(b) d = 2^dd; %% since total number of bits is equal to 2^dd z = round(Igray/d); %% divide each pixel by 2^dd subplot(2, 4, dd) ; title(['Image using bit ',num2str(abs(dd-9))]); hold on imshow ( z * d ); end % MATLAB program on Spatial Resolution (Sampling Levels) close all; clear all; clc I=imread('Maulik.png');%Read image information subplot(231); I1=rgb2gray(I);%Convert Color image to Grayscale image imshow(I1) title('Original image 512*512'); %Output this image I2 = imresize(I1,0.5); % for Resizing this function can also be used %I2=I1(1:2:end,1:2:end); %The row and column directions are sampled from the first bit, %Sample every other bit to generate a new matrix subplot(232); imshow(I2) title('Sample image (256*256)'); I3=I1(1:4:end,1:4:end); subplot(233) imshow(I3) title('Sample image (128*128)'); I4=I1(1:8:end,1:8:end); subplot(234); imshow(I4) title('Sample image (64*64)'); I5=I1(1:16:end,1:16:end); subplot(235); imshow(I5) title('Sample image (32*32)'); I6=I1(1:32:end,1:32:end); subplot(236); imshow(I6) title('Sample image (16*16)');