У нас вы можете посмотреть бесплатно Predictive Maintenance with MATLAB: A Data-Based Approach или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса savevideohd.ru
Do you work with operational equipment that collects sensor data? In this seminar, you will learn how you can utilize that data for Predictive Maintenance, the intelligent health monitoring of systems to avoid future equipment failure. Rather than following a traditional maintenance timeline, predictive maintenance schedules are determined by analytic algorithms and data from sensors. With predictive maintenance, organizations can identify issues before equipment fails, pinpoint the root cause of the failure, and schedule maintenance as soon as it’s needed. Highlights: Accessing and preprocessing data from a variety of sources Using machine learning to develop predictive models Creating dashboards for visualizing and interacting with model results Deploying predictive algorithms in production systems and embedded devices Using simulation to generate data for expensive or hard-to-reproduce failures Check out other Predictive Maintenance examples: https://bit.ly/PdM-Examples About the Presenter: Russell Graves is an Application Engineer at MathWorks focused on machine learning and systems engineering. Prior to joining MathWorks, Russell worked with the University of Tennessee and Oak Ridge National Laboratory in intelligent transportation systems research with a focus on multi-agent machine learning and complex systems controls. Russell holds a B.S. and M.S. in Mechanical Engineering from The University of Tennessee and is a late-stage mechanical engineering doctoral candidate. Chapters: 00:00 Introduction 00:47 Why do Predictive Maintenance? 05:07 Predictive Maintenance Concepts 08:51 Condition Monitoring in MATLAB 10:08 Extracting Features using Diagnostic Feature Designer 17:11 Training Machine Learning Models using Classification Learner 22:25 Predicting Remaining Useful Life 24:39 Training an Exponential Degradation Model 28:13 System Modeling for Predictive Maintenance in Simulink 31:40 Deploying Predictive Maintenance Algorithms 34:00 Summary #predictivemaintenance -------------------------------------------------------------------------------------------------------- Get a free product trial: https://goo.gl/ZHFb5u Learn more about MATLAB: https://goo.gl/8QV7ZZ Learn more about Simulink: https://goo.gl/nqnbLe See what's new in MATLAB and Simulink: https://goo.gl/pgGtod © 2023 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.