У нас вы можете посмотреть бесплатно Solidworks Porous Media Flow Simulation [Automobile Exhaust Pipe CFD] или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса savevideohd.ru
CFD(Computational Fluid Dynamics) of automobile exhaust pipe porous media will be carried out in Solidworks Flow Simulation module. Aim is to evaluate pressure drop in fluid as it pass through a porous media. In this tutorial we consider flow in a section of an automobile exhaust pipe, whose exhaust flow is resisted by two porous bodies serving as catalysts for transforming harmful carbon monoxide into carbon dioxide. When designing an automobile catalytic converter, the engineer faces a compromise between minimizing the catalyst's resistance to the exhaust flow while maximizing the catalyst's internal surface area and duration that the exhaust gases are in contact with that surface area. Therefore, a more uniform distribution of the exhaust mass flow rate over the catalyst's cross sections favors its serviceability. The porous media capabilities of Flow Simulation are used to simulate each catalyst, which allows you to model the volume that the catalyst occupies as a distributed resistance instead of discretely modeling all of the individual passages within the catalyst, which would be impractical or even impossible. Here, as a Flow Simulation tutorial example we consider the influence of the catalysts' porous medium permeability type (isotropic and unidirectional media of the same resistance to flow) on the exhaust mass flow rate distribution over the catalysts' cross sections. We will observe the latter through the behavior of the exhaust gas flow trajectories distributed uniformly over the model's inlet and passing through the porous catalysts. Additionally, by coloring the flow trajectories by the flow velocity the exhaust gas residence time in the porous catalysts can be estimated, which is also important from the catalyst effectiveness viewpoint. Download 3D model of automobile exhaust pipe. https://drive.google.com/file/d/1r7qs... For more soldiworks flow simulations, please subscribe our channel. / ansol